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ABSTRACT

A formula is derived for interpolation between output samples of an FFT,
i.e., in the frequency domain. Such a formula is useful for obtaining

greater frequency resolution when two coarse FFT outputs are available, 1
Consideration is also given to the effect ofvsuch interpolation on a

weighted FFT.
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ments, frequency resolution is limited by the length of the input sample stream
and by available data processing capacity. However, in applications such as
doppler radar, it often happens that high frequency resolution is needed only
over regions which are small compared to the sampling rate, whereas coarser
information will do for the rest of the spectrum. Such increased resolution
may be achieved in a number of different ways:

In digital signal processing applications involving spectral measure- i

(a) One may increase the order of the filter bank Fast Fourier Transform (FFT). !
Normally the order is chosen to be a radix 2 number in order to optimize
the efficiency of the FFT. Thus, if the order is doubled, the processing
time more than doubles before any information becomes available.

(b) If the frequency regions of interest are preselectable, high resolution
may be obtained if they are small (see, for example, p. 390 of [q ). The
breakeven point turns out to be a region size of half the sampling rate.
This method is not universally applicable in that no coarse information
is nadq available for the full range of frequencies, the frequency regions
must be selected apriori (rather than as a result of processing coarse
data), and the region sizes must be simple fractions of the sampling rate
such as 1/3, 1/12, etc.

(c) Another alternative is to form two low order (say N) FFTs from the input
data, and then combining (over the frequency regions of interest omly) to
obtain the higher resolution 2Nth order FFT. The first FFT would use the
even numbered samples, and the second the odd, as in the mechanization of
a decimation-in-time FFT. The drawback with this method is that the out-
puts of the primary FFTs will furnish coarse spectral data aliased 2:1.
Thus, with the first half of the spectrum folded into the second half,
the primary FFTs will yield intelligible coarse information only if the
spectral regions of interest are folded into regions which are clear (i.e.
which contain noise only). Even when this happens to be the case, the
aliasing reducés the coarse data signal-to-noise ratio by 3 db. .Again,

no coarse spectral data would be available before ts were

collected and processed.
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(d) Finally, one could perforﬁ an Nth order FFT on the first N samples and
another on the next N. The outputs of either of these can, of course,
be used as coarse data to determine regions whére greater resolution is
required. (In doppler radar applications, for example, targets could be
detected with the coarse data). The question now arises: can the two Nth
order FFT outputs be easily combined to produce greater resolution in
frequency areas of interest? The answer is "yes". We now derive the

formula to be used in this data combination.

Let the two sequential FFT output vectors be FFT1l and FFT2 respectively.
Let the 2N inputs be

{Xh ,\A-—'o).--,a'lf\)—i}) m

and define

._j-l'_‘ :
\A/H & L s (2) . i

Let the high resolution spectrum be §
{ Cl.k ) L<'= 0, - ) bé = 1~z ‘ 3)

Then, thinking in terms of a decimation-in-frequency FFT, we see that the
even outputs are
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are the even members of the output.
The odd members are
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and thus
- -i < '
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The frequency domain interpolation formula we require consists of eqs. (6) and
(12). The formula is exact, but in order to gain the computational advantage
which is desired in interpolation formulae, one would want to sum over only a
limited range, say, for Le [L“L)] , where Ll and Laare close to k. Note
that the importance of the {A‘ to the spectral estimate o‘-lud as approximately
inversely proportional tof-k. In fact, if N is large, we see that

Lol -'RT[L-—-—-‘ “*l‘]
i o WN.I 5 & - e i N
: (13)
~ 3L ({- 2L +2L)
whenever we use only a few neighboring d; such that
N e
If this is dQne, we may set
La dQ
2 L
a = — (14)
: R\t IR Z /1__ 3 (L-k)

Eq. (14) may be used as an approximation to the odd numbered values, eq. (12).
However, for a given application there is not a particularly great advantage '
in doing so. The coefficients of &l given in eq.(12) are easily obtained on
a computer,

. At this point one might ask how big the interval [L. ’ Lz] should
be, and if the terms outside this interval may indeed reasonably be neglected.
Since the sum in eq.(12), or equivalently, in the approximating eq.(14), is
finite, there is no question of divergence. However, the basic question, "How
good is the approximation?", is probably best answered by deriving a formula

for the finite impulse response (FIR) filter weights corresponding to the inter-

.




polated values, and then checking their frequence response.

Using nearest neighbors only, eq. (12) becomes

¥ 1
Ao 44 = A4, ak + A, Akﬂ, i
where
o, & —22 ' |
B s =
N(L - W) (16)
and * denotes the complex conjugate.
Thus
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Viewing eq. (17) as a convolution sum, we see that the FIR weights are

~(n+t) k —(n+) ko +1
{pt=op b S a0 s aiedon

Generalizing the definitioan (16) to

& .
o&“ﬂ bJ (1.__\A%;-23*Mf) ) .(20)

we can write an expression for the FIR weights using the nearest M neighbors.

We first set

M—1 L M]
RQk+q ~§° [0( wtl Aiecan + Rynr & A (21)

Comparing eqs. (20) with eqs. (15) and following, we easily deduce that the
weights are

M-1 -(p44)(\(-|~0
{ @: =-9QV\(“'N)Z—;‘- Ay Wi

(22)
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If the approximation leading to eq. (14) is used, we obtain
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for the FIR weights using the M nearest neighbors. It is desirable to
normalize the weights as derived in eqs. (19), (22), or (23) in order to.
achieve a specific gain at the center of the filter. In the following

example we show magnitude responses of a few candidate internolating filters.
They are all normalized to OdB.

Example

Suppose N = 16, 2N = 32, and k = 2, I.e., we desire the épectral estimate
(La.k-t-i. = O~5 based on two sequential 16-point FFT output vectors.
(Such a small order is chosen here for illustrative purposes only.) Figure 1

shows how the high resolution spectrum is formed using nearest neighbors only.

0 15
O @) — FFT1
0 15
O O e— w2
e L ] L ]
0 300 31 HIGH
@) O O <«—— RESOLUTION
SPECTRUM
REGION OF
INTEREST

Figure 1. Interpolation with nearest Neighbors only.

Figure 2 shows the result of using nearest neighbors only, formula (19).

In this case N Dolph-Chebyshev weights with 40 dB sidelobe suppression were
used [2] Call these weights {wn ; N= o, sk N-'j_} .

The equivalent set of 2N weights becomes

] a 3 '. :
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The filters corresponding to the neighboring even-numbered spectral estimates,
‘3-4 and Q¢ , are represented by dashed curves in the figure. As expected,
using N weights leads to rather poor filters after combining FFT1 and FFT2.

Note that such preweighting, which is commonly used for better filter shaping,
is easily incorporated into the formulas derived above. Since the weights go

with the input samples, equations (6) and (12) remain unchanged, and (22)
becomes

M-1
’ . ~(n+t) (le~w)
?(‘)’:‘t e T o (“'N):{:"o[““*i Wy '
(24)
~ () (bt (+m)
+°(-:4+1wu ] ) V\'—'—O,“‘)&N‘i% 2

The magnitude response of these {/ﬁgl}!s what is graphed in figure 2. This
kind of weighting is appropriate for the two N-point FFTs, but is undesirable for a
2N-point FFT. The appropriate weighting would consist of 2N weights. Figure 3
shows Oy » Qg and @, in this case. The iterpolating filter's sidelobe
structure is now much more appealing, and, of course, the even numbered filters
are of just the desired Dolph-Chebyshev type. Figure 4 shows the same situation,
but in this case the four nearest neighbors on each side have been used (formula
(24) with {lifkf} as 2N Dolph-Chebyshev weights.) As expected the result is
much improved. The drawback with using 2N weights is obvious: each of the
primary FFTs receives a lopsided set of weights. However, since these coarse
spectra are used for quick-look purposes only, their degraded quality may often
be tolerable. Figure 5 shows the magnitude response of FFT1l,, the first filter.
The dashed curve shows the filter shape with N Dolph-Chebyshev weights.
Conclusion
This paper has derived a set of equations,'(6) and (12 or 14), useful for
interpolating between weighted (or unweighted) output samples of sequential FFTs,
i.e., in the frequency domain. The quality of the interpolation has been illus-
trated- by means of a numerical example, which also showed the consequences of two
different weighting approaches. It is challenging to gonsidet that a compromise
may exist between these two approaches; i.e., a weighting sequence which would
improve both the high resolution and the quick-look spectra as compared to the
results of either of the above approaches.
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